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LETTER TO THE EDITOR 

Experimental observation of stochastic postponements of 
critical onsets in a bistable system 

S D Robinsont, Frank Moss$ and P V E McClintockt 
t Department of Physics, University of Lancaster, Lancaster LA1 4YB, UK 
$ Department of Physics, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA 

Received 27 September 1984 

Abstract. We have employed a novel type of analogue electronic simulator for an experi- 
mental study of a nonlinear stochastic differential equation representative of a large class 
of bistable systems. The results obtained are in good agreement with theoretical predictions 
derived from the Stratonovic version of the white noise Fokker-Planck equation. The work 
is believed to be of relevance to a wide range of topics in physics, chemistry, biology and 
other branches of science. 

Nonlinear dynamical systems that exhibit a continuous instability can often be 
influenced to a quite dramatic extent by the external modulation of a control parameter. 
The modulation may sometimes be an unavoidable influence of the system’s surround- 
ings; in other cases, it is introduced deliberately by the experimenter; and its frequency 
content can lie anywhere between the two extremes of white noise on the one hand, 
or a single frequency sine wave on the other. Of particular interest is the fact that in 
many cases, covering a very wide range of scientific contexts, the effect of the modulation 
is to shift the onset of the transition or instability to a larger (average) value of the 
control parameter in question: that is, in the direction opposite to that suggested by 
intuition. Such effects have been found, or are to be anticipated, in such diverse areas 
as: quantised turbulence in superfluid 4He (Oberly and Tough 1972, Moss and Welland 
1982) ; classical hydrodynamics (Donnelly et a1 1962, Ahlers et a1 1984) ; electronics 
(Kabashima and Kawakubo 1979); optics (Bowden et a1 1981); liquid crystals (Kai 
et a1 1979, Brand and Schenzle 1980, Kawakubo et a1 1981) where, in relation to the 
penultimate citation, it is important to note (San Miguel and Sancho 1981) that, in 
reality, the noisy multiplicative parameter is itself nonlinear; chemical equilibria (Roux 
et a1 1983); and tumour immunology (Lefever and Horsthemke 1979). 

Although these phenomena are not yet fully understood theoretically, it appears 
probable, in view of their seemingly universal nature, that (contrary to alternative 
explanations offered in some of the earlier papers) they are an inherent property of 
all systems displaying a certain class of nonlinearity. In this letter, we present a 
preliminary report of an experimental study of a model nonlinear system belonging 
to the class in question, for which a detailed theoretical analysis already exists, and 
we show that it does indeed exhibit the anticipated stochastic postponement effect. 

One of the more fruitful theoretical approaches (but see also Graham and Schenzle 
1982) to the white noise problem in general has entailed the use of the appropriate 
Fokker-Planck equation for calculation of the stationary probability density function 
whose maxima, representing ‘most probable’ values of the parameter in question, are 
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then investigated as a function of the modulation intensity and other parameters of 
the system. This is the philosophy adopted by, particularly, Horsthemke, Lefever and 
their co-workers. A detailed exposition and review will be found in Horsthemke and 
Lefever (1984). Welland and Moss (1982) applied this type of approach to the cubic 
bistable system described by the stochastic differential equation 

dx/  d t = - x3 + A,x’ - QX + R = f( X, t ) 

where 

A, = A +IT.$, 

is the noisy control parameter of mean A and variance U’, and Q and R are constants. 
This equation can be regarded as a general example of a system with a continuous 
instability. For U = 0, with an appropriate choice of Q and R, there is a range of A for 
which the equilibrium value of x is treble valued (two stable roots and one unstable 
one). When U # 0, x is of course no longer deterministic; but it can still be described 
by its statistical density p(x).  Welland and Moss (1982) showed that, in the presence 
of Gaussian white noise, the stationary density should be given by 

N 
(3) 

where N is a normalising constant and v = 1 or 2, depending on whether one chooses 
to use the Stratonovic or Ito version respectively of the white noise Fokker-Planck 
equation. By analogy with recent experiments on the so-called genetic model (Smythe 
et a1 1983a), we can anticipate that the appropriate choice in the present case will 
probably also turn out to be v = 1. The most interesting point about (3) is that it 
predicts a shift with (+ of the positions x, of the extrema of p,(x), and it is straightfor- 
ward to demonstrate that these are given by the roots of 

(4) ( 1  + v(+~)x;-Ax:,+ Q X ~ -  R = 0. 

Furthermore, an increase of U tends to stabilise the system in its lower state, correspond- 
ing to a postponement of the transition; and, for a sufficiently large value of (+ the 
transition is completely annihilated. This type of behaviour is, of course, highly 
reminiscent of that observed in some of the experiments quoted above. 

A quantitative comparison of these ideas with experiment is difficult to achieve, 
however, first because it is in general not known how accurately (1 )  (or an equation 
of similar type) can be expected to model any given natural phenomenon and, secondly, 
because it is usually not possible to measure the density function itself wherein resides 
most of the detailed information about the stochastic processes under study. Usually, 
it is mean values such as (x) or (x2) that are measured in experiments, and these 
inevitably introduce ambiguities of interpretation. For these reasons, we have elected 
to study the effect of noise on an analogue simulator that is designed specifically to 
follow ( 1 )  as accurately as possible, under conditions such that p,(x) and x,((+, A )  
can be measured explicitly for comparison with (3) and (4). 

A block diagram of the simulator, for the case of Q = 3 ,  R =0.7 in ( l ) ,  is shown 
in figure 1. It is similar in general design to that employed earlier to search for a NIFT 
in the genetic model (Smythe et a1 1983b), has an overall scale factor of unity and is 
constructed entirely from standard commercially available analogue components, 
Gaussian white noise from the noise generator is bandwidth-limited by means of a 
single-pole filter of time constant T ~ .  It is straightforward to demonstrate (Moss er a1 
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1984) that, under these 'real white noise' conditions, the u2 that appears in (3) and 
(4) must be replaced by ( ~ T ~ / T ~ ) V L  where VN is the RMS amplitude of the noise 
applied to the simulator and T~ >> TN is the time constant of the integrator. In practice, 
we have set T[ = 1.2 ms, T~ = 12 ps for most of the measurements. The noise is therefore 
perceived by the simulator as being white. 

The DC ( a  = 0) response of the simulator, modelling the deterministic version of 
(11, is shown by the circled points in figure 2. The quality of agreement with the 
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Figure 2. Plots of the maxima x, in the stationary density function measured for 
electronic simulator shown in figure 1 .  The measured values are plotted against A 
various values of U. The full curves are plots of equation (4). 
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associated full curve, representing ( I ) ,  may be considered quite reasonable in view of 
the known small non-idealities associated with the individual components (particularly 
the analogue multipliers) that comprise the circuit. 

With noise applied to the simulator, x is of course a fluctuating quantity, and we 
then measure its density function p ( x )  by means of the Nicolet 1080 computer in the 
manner described previously (Smythe et a1 1983b). Some selected experimental 
densities are plotted for A = 3.6 in figure 3. As U is increased from zero, p ( x )  starts to 

X 

Figure 3. Some selected examples of stationary density functions p , ( x )  measured with 
A = 3.6 for the electronic simulator shown in figure 1. As the variance a’ of the applied 
noise is increased the density broadens, shifts, becomes bimodal and finally, for very large 
a, converges towards a delta function near to the lower root of the deterministic ( a  = 0) 
version of equation ( I ) .  The shapes of these densities are found to be in good agreement 
with the Stratonovic ( Y = 1 )  version of equation ( 3 ) .  

spread from its initial delta function, but at first remains centred on the deterministic 
solution. With a further increase of U, x,  decreases and a second maximum eventually 
starts to develop at a value of x that is close to the lower root of the deterministic 
equation. For sufficiently large U, the upper maximum is completely overwhelmed, 
and the density tends towards a delta function centred on the lower root. 

Similar behaviour occurs even when A is beyond the position of the upward 
transition in the deterministic solution, corresponding to the predicted stochastic 
postponement effect. We have measured x,(u, A )  by fitting parabolae by the method 
of least squares to the regions close to the maxima of density functions such as those 
of figure 3 for a wide range of U and A, with the results shown by the U # 0 points of 
figure 1. The associated full curve in each case represents the Stratonovic version of 
(4): that is, with Y = 1. It should be emphasised that there are no adjustable parameters 
in these comparisons. The discrepancies at large A and U quite probably arise from 
‘clipping’ of the largest voltage excursions in the section of the circuit that deals with 
the quadratic term; but, apart from this, the level of agreement may be regarded as 
remarkably good. A careful comparison of p , ( x )  with (3) for v =  1 and v = 2  quite 
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clearly favours the ( v  = 1 )  Stratonovic stochastic calculus, consistent with our earlier 
conclusion (Smythe er al 1983a) that, even though the Ito approach is correct from a 
strictly mathematical point of view, it is the Stratonovic interpretation of the white 
noise process that describes what actually happens in nature: this aspect of the work 
will be discussed elsewhere (McClintock and Moss 1984) in relation to detailed 
comparisons of the measured and theoretical densities. 

When A is being changed at constant U we have found that, for small U, the 
transition remains hysteretic on the time scale of the experiment. For larger U, although 
the system always remains centred on either the upper or the lower state as before, it 
may switch spontaneously between them during the period T~ (typically ten minutes) 
necessary for acquisition of a density function. Reproducible measurements of bimodal 
densities, such as those for U = 0.3, 0.5 in figure 3, become possible only when U is 
large enough for the mean first passage times T~ between the states to have become 
very much shorter than T ~ .  We suspect that the magnitude of T~ is closely related inter 
alia to the amplitudes of the low frequency modulation components so that, if these 
were attenuated, as compared to the white noise of the present studies, the transition 
would appear to retain its hysteresis despite being shifted to the larger values of A 
shown in figure 2. 

We believe that these results represent significant progress towards an understanding 
of the remarkably catholic stochastic postponement effect referred to at the beginning 
of this letter. Much work still remains to be done, however. Experimentally, even in 
relation to the present simulator, it will be necessary, as mentioned above, to study 
the effect of coloured noise of various kinds and, in particular, to investigate time- 
dependent effects. Theoretically, it remains highly desirable to achieve a more satisfac- 
tory understanding of the relationship (Graham and Schenzle 1982) between bifurcation 
theory and the Fokker-Planck approach from which (2)-(4) were derived. We can, 
however, regard the excellent agreement between experiment and theory in figure 2 
as constituting a convincing verification of the calculations of Welland and Moss (1982) 
thereby, in turn, confirming the hypothesis that the stochastic postponement of transi- 
tions is a universal phenomenon inherent in the nonlinearities of the class of bistable 
systems under discussion. 

We are indebted to B K Jones for valuable discussions and for the loan of a noise 
generator. 
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